If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(4(119))^2=2a^2
We move all terms to the left:
(4(119))^2-(2a^2)=0
determiningTheFunctionDomain -2a^2+4119^2=0
We add all the numbers together, and all the variables
-2a^2+16966161=0
a = -2; b = 0; c = +16966161;
Δ = b2-4ac
Δ = 02-4·(-2)·16966161
Δ = 135729288
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{135729288}=\sqrt{67864644*2}=\sqrt{67864644}*\sqrt{2}=8238\sqrt{2}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8238\sqrt{2}}{2*-2}=\frac{0-8238\sqrt{2}}{-4} =-\frac{8238\sqrt{2}}{-4} =-\frac{4119\sqrt{2}}{-2} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8238\sqrt{2}}{2*-2}=\frac{0+8238\sqrt{2}}{-4} =\frac{8238\sqrt{2}}{-4} =\frac{4119\sqrt{2}}{-2} $
| 7u-(-16)=58 | | -7=s/3-15 | | 15(x+7)=9(x-1)+22 | | 4z+14z-16z=16 | | -2+x+7x=5 | | q/2+11=14 | | (x-18)*(-4)=-68 | | M-16m+-20m+9m+12m=14 | | 10-13x=-3x-3 | | 11=10x-13+12 | | 4b+4.1-1.8b=31.16 | | 147n=21 | | -1.3(d+9)=-17.42 | | u-36=8 | | -5+v/3=16 | | 4=6-h | | 10=13(13-x)+15x | | 16=2(3b) | | (x-18)x-4=-68 | | 6=-2x+14 | | 7(k-86)+22=99 | | 3y^2-6y=15 | | 30=-3(x+6) | | 7u-17=10u-80 | | 3/2x+6=2x-1 | | 1/4x=3;x | | 45=9(y-89) | | 1/3(x+2)=12,2/3 | | 8x-10x=4x+12 | | 4x5x-4-3x=8 | | x-18(-4)=-68 | | -3x-13+10=4 |